ELECTRONIC CALCULATOR

CASIO fx-201P

INSTRUCTION MANUAL

BM MARK FOR HIGH QUALITY & RELIABILITY

& RELIABILITY

ANNEANCE MACONE

MINISTERS MACONE

MINISTERS MACONE

INTRODUCTION

Dear Customer,

Congratulations on your purchase of the most advanced electronic calculator. This is a scientific calculator equipped with a 127-step program function that makes repeat and complex calculations easy and trouble-free. This program function is in addition to such big features as one-touch function keys that allow you to easily perform mixed calculations in the four arithmetic operations, an independent memory, 10 constant memories and 100-digit ($10^{\pm 99}$) calculation capacity.

To utilize the full features of this calculator no special training is required but we suggest you study this instruction manual to become familiar with its many abilities. It has been written to assist you in understanding the various control keys and functions of the calculator through simple examples and their applications.

INDEX

INTRODUCTION

DISPOSABLE DRY BATTERY OR AC OPERATION	1
PART-1 Manual calculations	2
1-1 KEYBOARD	2
1-2 NOTICE	5
	6
	6
1-0 WEWOIT CALCOLATION	7
1-6 FUNCTION CALCULATION	9
PART-2 How to perform program calculation	2
2-1 KEYBOARD 1	2
2-2 INTERNAL MEMORIES (For use with program calculations)	5
2-3 PROGRAM STEPS AND COMMAND CODES	5
2-4 EXPLANATION OF BASIC PROGRAMS	6
2-5 HOW TO CHECK, ERASE AND CHANGE PROGRAMS	0
2-6 PROGRAMMING RULES	2
2-7 HOW TO USE THE W (Manual Jump)	4
2–8 PROGRAM TO FIND TOTALS (Σ)	
2-9 HOW TO USE @TO and STE (Unconditional Jamp)	
2-10 HOW TO USE IF (Conditional Jamp)	8
2-11 HOW TO USE I and M (Indirect Address)	
2-12 HOW TO USE(Sue) SUBROUTINE	
	3
	5
2-15 WRITING FLOW CHARTS	
	7
2-17 REFERENCE PROGRAMS	0
Specifications	8
Care of your pour electronic relaulator	a

DISPOSABLE DRY BATTERY OR AC OPERATION

This calculator operates on either dry batteries or AC with the use of the AC ADAPTOR.

DRY BATTERY OPERATION

With four AA size manganese dry batteries (SUM-3) it operates for approximately 8 hours continuously.

Even when battery power decreases, the display will merely darken but cause no miscalculation. When you have finished your calculation, be sure to switch off the power to save the battery.

To change batteries, put the power switch off first. Slide open the battery cover and replace batteries.

AC OPERATION

If you are in a 117V area, for instance, use a 117V AC ADAPTOR. When you use an AC ADAPTOR of a different voltage, it may cause damage to both the AC ADAPTOR and calculator. Plug the applicable AC ADAPTOR (100, 117, 220 or 240V) into the AC outlet and the cord into the calculator. When plugged in, battery power supply stops automatically, so battery power is not wasted.

To prevent damage to the calculator, USE ONLY THE AC ADAPTOR recommended by your dealer.

PART-1 Manual calculations

In Part 1 we will explain the functions of the calculator, excluding the program function, and the method of operation. That is, in this part, we will explain only what is necessary for manual calculating.

1-1. KEYBOARD

(1) POWER SWITCH: Move the switch to the right and "O." appears to show the calculator is ready for use.

MANUAL COMP WRITE

(2) PROGRAM SWITCH:

When performing manual calculations, set the program switch to the "MANUAL" position.

RAD DEG GRAD

ANGULAR MODE SELECTOR:

By setting the selector either at "RAD" (Radian), "DEG" (Degree) or "GRAD" (Grade) position, trigonometric (or inverse trigonometric) functions can be performed based on the angular measurement indicated by the selector.

(4) 0. READ-OUT:

Shows each entry and result, whether in the regular 10 digit display or in scientific notation, through a green digitron tube, suppressing unnecessary O's (zeroes).

In some calculations, the "-" sign appears momentarily while complicated formulas are being processed. So do not enter numerals or press the function keys until the previous answers are displayed.

The data memory numbers are displayed in the upper digit along with the lighting of the ENT lamp (When values are stored in the memory) and the ANS lamp (When values are read out). The ENT lamp is indicated by (ENT) and the ANS lamp by (INS) in this manual.

Enters numerals. For decimal places, use the . key in its logical sequence.

(6) ENTER EXPONENT KEY:

Enter the exponent of ten up to $10^{\pm 99}$. To enter 2.56 x 10^{45} , operate P.56 245.

(7) □ , □ , ☒ , ☐ FUNCTION COMMAND AND RESULT KEYS:

Press the numeral and function command keys in the same logical sequence and the lakey obtains the answer.

(8) DATA INPUT KEY:

Press to store displayed number in a data memory. To store 12.3 in data memory number 3, for example, press 12 a 3

(9) M DATA OUTPUT KEY:

Press to display the number stored in a data memory. To display the contents of data memory number 9, for example, press (a) (a)

There are 10 data memories: 1~9 and 0.

The contents do not change until a new entry is made.

(10) MEMORY PLUS KEY:

Transfers the number displayed into the memory positively. Obtains answers

in four functions and N-th power calculation, and automatically accumulates them into the memory positively.

(11) MEMORY RECALL KEY:

Recalls contents of the memory without clearing the same.

(12) MC MEMORY CLEAR KEY:

Clears contents of the memory.

(13) AC ALL CLEAR KEY:

Clears the entire machine except the independent memory and data memories, and releases an overflow check.

(14) C CLEAR KEY:

Clears keyboard entry for correction (including entries in scientific notation), and also clears answers of functions while performing mixed calculations.

Function command keys (+, -, x, \div , $\dot{x}^{\mathcal{Y}}$) can be interchanged and the last function key depressed is effective.

(15) 🔂 SIGN CHANGE KEY:

Changes the sign of the number displayed from plus to minus and vice versa.

(16) 元 Pi KEY:

Enters the circular constant in 10 digits (3.141592653).

(17) ™ SEXAGESIMAL → DECIMAL CONVERSION KEY:

Converts the sexagesimal figure to the decimal scale.

(18) sin SINE KEY:

Obtains the sign for the angle on display.

(19) COSINE KEY:

Obtains the cosine for the angle on display.

(20) tan TANGENT KEY:

Obtains the tangent for the angle on display.

(21) arc ARC KEY:

Performs inverse trigonometric functions in combination with the sin , so or sin key.

(22) 1/2 RECIPROCAL KEY:

Obtains the reciprocal of the number displayed.

(23) SQUARE ROOT KEY:

Obtains the square root of the number displayed.

(24) log COMMON LOGARITHM KEY:

Obtains the common logarithm of the number displayed.

(25) In NATURAL LOGARITHM KEY:

Obtains the natural logarithm of the number displayed.

(26) EXPONENTIAL KEY:

Raises the constant e (2.7182818.....) to x powers.

(27) X POWER RAISING KEY:

Raises the base x to y powers.

(28) TO X POWER OF 10 KEY (INVERSE LOG KEY):

Raises the constant 10 to x powers.

1-2. NOTICE

(1) SCIENTIFIC NOTATION

- 1) The minus (-) sign for mantissa.
- 2 The mantissa.
- 3 The minus (-) sign for exponent.
- 4 The exponent of ten.

When the answer is more than 1×10^{10} or less than 1×10^{-2} , it is automatically shown by the scientific notation, 8 digit mantissa (7 negative digits) and exponent of ten up to ± 99 .

Entry can also be made in the form of scientific notation by using the (Enter Exponent) key. Note that the key does not work when the first entry (mantissa) is made exceeding 8 digits (7 digits, when the figure is negative).

EXAMPLE	OPERATION	READ-OUT
$(1.23\times10^{10})+(4.56\times10^{7})$	1.23₽	1.23 00
$= 1.23456 \times 10^{10}$	10	1.23 10
	0	1.23 10
	4⊡56Ⅲ	4.56 00
	7	4.56 07
		1.23456 10

The answer is read: $1.23456 \times 10^{10} = 12345600000$

Remark:

- *Regular entries are possible up to 10 digits.
- No entry can be made above that even though the keys are pressed.
- *Exponent entries are possible only when the mantissa part is from 1 to 8 digits (7 digits for negatives).
- *When entries with 3 or more digits are made after depressing the key, the final 2 digits becomes exponent.

(2) OVERFLOW CHECK

Overflow is indicated by an "E" sign and stops further calculations.

To release the locked registers caused by the overflow check, depress the key.

Overflow occurs:

1) When an answer or accumulated total in the memory becomes more than 1 x 10^{100} .

When the function calculations are performed on a number exceeding their input range.

Remarks: The content of the memory is protected against overflow and the total accumulated so far is recalled by the key after the overflow check is released by the key.

1-3. BASIC OPERATIONAL EXAMPLES

- * There is no need to depress the @ or \(\bar{\circ}\) key prior to starting each new calculation.
- * A negative figure is displayed with a minus (-) sign on the left of the figure.

EXAMPLE	OPERATION	READ-OUT
(12+3-45.6)×89÷7 =-389.0571428	12♣3₽45 ⊙6⊠89♣7₽	-389.0571428
963×(56-23)=31779 12369×7532×74103		31779.
6.9036806×10 ¹² (=6903680600000)	12369⊠7532⊠74103⊟	6.9036806 12
1.23÷56÷78.9≑ 2.7838131×10 ⁻⁴	1 • 23 • 56 • 78 • 9 •	2.7838131-04
(=0.00027838131) $(7.9\times10^{56})\div(4.6\times10^{74})$	×	
$(1.3 \times 10^{23}) =$	7 ⊡ 9 2 5 6 € 4 ⊡ 6 2 7 4	
223260.8695	×1 · 3 · 23 □	223260.8695

The Key key changes the sign of displayed number from plus to minus (or vice versa). To enter the negative exponent, use the key before or after entering the exponent.

1-4. CONSTANT CALCULATION

ENTRY ● ● (■ ■ , 🛛 🗷 or 🖶 🖨)ENTRY 🖨 obtains answer.

To be set as a constant.

* To renew the constant, follow the operation step as above.

EXAMPLE	(AMPLE OPERATION	
3+2.3=5.3	2 ⊡3 🕶 🗷 🗷	5.3
6+2.3=8.3	6 ⊟	8.3
7-5.6=1.4	5 ⊡ 6 □ □ 7 □	1.4
(-4.5)-5.6=-10.1	4.5₺■	-10.1
2.3×12=27.6	12⊠⊠2⊡3⊟	27.6
$(-9) \times 12 = -108$	9₺目	-108.
74÷2.5=29.6	2⊡5₩₩74₽	29.6
85.2÷2.5=34.08	85⊡2目	34.08
17+17+17+17=6.8	1.7000	3.4
	8	5.1
		6.8
1.72=2.89	1 🖸 7 🛛 🖾 🗎	2.89
1.7 ³ =4.913		4.913
1.74=8.3521		8.3521
1 0.25	4888	name are not a last
$\frac{1}{4} = 0.25$		0.25
$\frac{1}{2} = 0.0625$	and the same of th	0.0625

Reciprocal calculations can be performed by the use of the constant capability.

$\frac{56}{4\times(2+3)} = 2.8$	2₩3₩4₩₩	20.
4×(2+3)	56	2.8

1-5. MEMORY CALCULATION

This calculator is equipped with one independent memory, using M and M ... as well as 10 data memories using and [3].

(1) CALCULATION USING THE INDEPENDENT MEMORY

ENTRY X (), or) ENTRY Obtains answer and automatically accumulates it into the memory positively. Recalls the accumulated total in the memory. Clears contents of the memory.

* To accumulate a number into the memory negatively, change the sign from plus to minus by the ₺ key prior to depressing the ₺ key.

Be sure to depress the 🚾 key prior to starting a memory calculation.

EXAMPLE	OPERATION	READ-OUT	
852×147=125244	WC852⊠147CC	125244.	
-)789×654=516006	789⊠654₺	-516006.	
-390762	MR	-390762.	
70+40+100=210	™ 70 ₩ 40 ₩ 100 ₩	210.	
+)80- 5+ 20= 95	80 5 5 20 0	95.	
305	MR	305.	
4.5×12=54	MC12XX4 · 5 M	54.	
$-)5.6\times12=67.2$	5.6₺.	-67.2	
$+)6.4 \times 12 = 76.8$	6 - 4 - 10	76.8	
63.6	MR	63.6	

* The Takey also works to transfer a number displayed, whether entry or result, to the memory positively as many times as the Takey is depressed.

(2) CALCULATION USING THE DATA MEMORIES

* There are 10 data memories: 1~9 and 0. Data and answers can be freely stored in any of these.

Normally, displayed number is stored in the memory.

When a new number is entered into the memory, the previous number

stored is cleared automatically and the new number is stored.

* When a number is put into a data memory the memory number and the "ENT" lamp light: when a number is recalled from the memory, the memory number and the "ANS" lamp light.

EXAMPLE	OPERATION	READ-OUT	
$193.2 \div 23 = 8.4$	193 2 111	™ 1	193.2
$193.2 \div 28 = 6.9$	₽23目	OF PRESIDE	8.4
193.2÷42=4.6	T) and	(ANS) 1	193.2
	€28目	12 12	6.9
	MS 1 +42⊟		4.6

1111111 22222222

333333333

 $(1\times8+1)\times12345679=1111111111$ $(2\times8+2)\times12345679=2222222222$

1001 28002 2001 21234567900 3 日

2 HI 1 X AKS 2 + AKS 1 X AKS 3 =

3 EM 1 X AK 2 + AK 1 X AK 3 =

 $9 \times 6 + 3$ (7-2)×8

9四6日3日四百 7 = 2 × 8 = m = M1 # M2 B

(ENT) 1 5 7. (ENT) 2 40 1.425

 $(2+3)\times(9-5)-(8\times6)+(7\div4)=-26.25$

2+3=M19=5=M28X6=M37+4M

ANS 1 X ANS 2 - ANS 3 + MR =

2625

1-6 FUNCTION CALCULATION

This calculator computes various specific functions at one touch, independent of basic arithmetic calculations

The maximum effective number of digits for functions is 8. Output accuracy is ± 1 in the 8th digit (± 1 in the 7th digit for x^y).

The effective number of digits for , 1 and is 10.

SEXAGESIMAL → DECIMAL CONVERSION

The we key converts the sexagesimal figure (Degree, Minute and Second) to decimal scale

EXAMPLE

OPERATION

READ-OUT

63°52'41"=63.87805555....° 63°52°741°7

63 87805555

(2) TRIGONOMETRIC FUNCTION

The sin, cos and lan keys obtain each trigonometric value of the entry. In case the degree is given on the sexagesimal scale, it is necessary to convert the figure to the decimal scale before performing the trigonometric functions. Input range: $\sin x/\cos x/\tan x$; $|x| \le 1440^{\circ}$ (8 π rad, 1600 gra)

EX	AN	ИΡ	LE

OPERATION

READ-OUT

sin63°52'41"

=0.89785901 $\cos(\frac{\pi}{2}\text{rad}) = 0.5$

"RAD"

639952994199 sin

π = 3 = cos

0.89785901 0.5 tan(-35gra) = -0.61280079

"GRA"

35 1/2 tan

0.61280079

2sin45°× cos65°= 0 597672473

"DEG" 2345 5 365 65

0.597672473

(3) INVERSE TRIGONOMETRIC FUNCTION

The grace key performs each inverse trigonometric function in combination with the sin , cos or tan key.

Input range: $\sin^{-1} x / \cos^{-1} x$; $|x| \le 1$ $\tan^{-1}x$: $|x| < 1 \times 10^{100}$

EXAMPLE

OPERATION

READ-OUT

sin 10 5=30°

"DFG"

30.

 $\cos^{-1}\frac{\sqrt{2}}{2} = 0.78539816 \text{ rad } (= \frac{\pi}{4} \text{ rad})$

"RAD"

2 - 22 = arc cos 日元日

0.78539816 0 249999998

tan-1 0.6128=31.499967° (=31°30')

"DFG"

6128 arc tan ■31×360× 31,499967 29 99802

 $\sin^{-1}0.8 - \cos^{-1}0.7 = 7.557106^{\circ}$

"DEG" 8 arc sin 7 arc cos E

7.557106

(4) LOGARITHMS

The log key obtains the common logarithms of the number displayed. The key obtains the natural logarithms of the number displayed.

 $0 < x < 1 \times 10^{100}$ Input range:

EXAMPLE

OPERATION

READ-OUT

 $\log 123 = \log_{10} 123 = 2.0899051$ In90=loge 90=4.4998097

123 log

2.0899051

log 456 ÷ In 456 = 0.434294475

90 In

4.4998097

MC 456 11 log - 11 ln =

0.434294475

(5) EXPONENTIATIONS

The 10^{-1} key raises the constant 10 to x powers.

The e^x key raises the constant e (base) to x powers.

In another words, this is to obtain antiloge X.

The x^y key raises x to y powers. The number displayed when the x^y key is

used, is an intermediate result.

Input range: 10^{X} : |X| < 100

 $|x| \le 230$

; $0 < x < 1 \times 10^{100}$

EXAMPLE	OPERATION	READ-OUT
101.23=16.982437	1 ⊡ 2316	16.982437
e 4.5 = 90.017131	4 · 5 e 2	90.017131
2.35.6=106.09035	2 • 3 ≥ 7 5 • 6 €	106.09035
$(78-23)^{-12}=1.3051118\times10^{-1}$	21 78■23ぼ12短目	1.3051118-21
4 ^{2.5} =32	2 · 5x*x*4 =	32.
$0.16^{2.5} = 0.01024$	⊡16⊟	0.01024
$5.76^{2.5} = 79.62624$	5⊡76⊟	79.62624
$3^{12} + e^{10} = 553467.466$	32712 10€ =	553467.466

(6) SQUARE ROOT & RECIPROCALS

The F key extracts the square root of the number displayed.

EXAMPLE	OPERATION	READ-OUT
$\sqrt{2} + \sqrt{3} = 3.146264369$	2/■3/■	3.146264369
$\frac{1}{5+\frac{1}{3}}$ = 0.1875	5₩3№₽₩	0.1875
$\sqrt[7]{123} = 123^{\frac{1}{7}} = 1.9886478$	12327日	1.9886478

PART-2 How to perform program calculations

Program calculation is explained in Part 2. Whether or not a program is convenient is determined by the program content. Since programming is all based on theory, perfect understanding of the basic principles allows better programming and more efficient use of this calculator.

2-1. KEYBOARD

(1) PROGRAM SWITCH

:

MANUAL (Manual mode) ...Set to this position for manual calculations where a program is not used. This position will be indicated by < MANUAL> in this instruction manual.

COMP (Compute mode) ... Set to this position to perform calculations using a program.

Indicated by <COMP>.

WRITE (Write mode) Set to this position when storing a program in the calculator, or to check a stored program.

Indicated by <WRITE>.

Note: When the corw key is depressed immediately after the program switch position is changed, 0.0000 way appear in the read-out. Subsequent calculations, however, can be made correctly.

(2) READ-OUT:

15t read-out part 2nd read-out part 123 - 1.23 4557 - 39

* 1st read-out part the first 3 digits of the read-out display program step numbers or data memory number.

* 2nd read-out part displays entries, answers, or the program contents as code number or values. "—" also lights in the first column when the calculator is calculating.

* ENT (entry) lamp This lamp lights together with the display of the memory number when waiting the input of program data. Indicated by

* ANS (answer) lamp This lamp lights together with the memory number when an answer to a program calculation is displayed. Indicated by (MS).

The operation of the angular mode selector is the same as for manual calculations.

(3) OPERATION KEYS:

The numeral and decimal point keys (1 ~ 9, 0, ...), command keys

(➡ , ➡ , ☒ , ➡ , ☒ , ∰ ,) and function calculation keys (, , In , ℯ , ☒ , ☒ , Io , , , , In , o are used in the

<WRITE> mode to write program into the calculator. In the <COMP> mode, they work to give the respective calculation commands.

DATA ENTRY KEY :

<WRITE> mode Use to write in data input messages.

<COMP> mode Use to advance the program by the operation Data

AMS ANSWER KEY: <WRITE> mode Use to write in answer display messages. <COMP> mode Use after reading out an answer to advance the program. MEMORY ALL CLEAR KEY (MC): <WRITE> mode Use to write in a clear command for the 10 data memories and I-memory. <COMP> mode Clears 10 data memories and I-memory. It works as independent memory clear (MC) only in the <MANUAL> mode GOTO KEY (1/2): GOTO <WRITE> mode. Use to write in unconditional jump commands. <COMP> mode.... Works as ⋈ (reciprocal key). SUBROUTINE KEY: <WRITE> mode Use to write in subroutine programs. <COMP> mode No command. STATEMENT NUMBER KEY: ST# <WRITE> mode Use to write in the address to which both conditional and unconditional jumps are made. <COMP> mode No command. MESSAGE FND KEY: <WRITE> mode Use to divide formulas and messages in programming. <COMP> mode No command. MANUAL JUMP KEY: MJ <WRITE> mode Use to write in MJ commands in programs. <COMP> mode Use during execution of a program to make a jump at the MJ position in the program. CHECK KEY (START KEY) :

jump at the MJ position in the program.

[CHECK KEY (STAFT KEY) :

<WRITE> mode Use when advancing a written program ahead 1 step (called program check). Shown as see in this manual.

<COMP> mode Use to start a program calculation (to read the program from the first step). Shown as see in the program from the first step).

K CONSTANT WRITE-IN KEY (元):
<WRITE> mode Use to write in constants in a program.
<COMP> mode Works as a 元 (Pi) key.

this manual

IF KEY (™);

<WRITE> mode Use to write in conditional jump commands.

<COMP> mode Works as a ™ (Sexagesimal → decimal conversion key.)

INDIRECT KEY ():

<WRITE> mode Use to write in the command to store a value in the I-memory

IM	INDIRECT MEMORY KEY (III): WRITE> modeUse to write in the command to indirectly address the values stored in the I-memory during calculation.
	<comp> modeNo command. It works as (Independent memory recall) only in <manual> mode.</manual></comp>
C	CLEAR KEY: <write> modeUse to back up a written program one step and</write>

<COMP> mode.....Use to clear displayed data or answers.
ALL CLEAR KEY:

<WRITE> mode Use to erase a written program.

<COMP> mode No command

<COMP> mode.....Use when desired to stop a program calculation.

2-2. INTERNAL MEMORIES (FOR USE WITH PROGRAM CALCULATIONS)

Arithmetic operations register	The most diW
Function calculations register	The imposit
Independent memory 1	can not be used in program
Data memory 1	calculations
Data memory 9 } 10 Date memory 0	for storing data and answers during calculations
I-memory 1	for indirect address indication,
Program memory (127 steps)	only 1 digit (1~9, 0) can be stored.

2-3. PROGRAM STEPS AND COMMAND CODES

When the program switch is set at <WRITE> position, step numbers and command codes are displayed to indicate what step up a program is being written in or during check to indicate what step belongs to what command, etc.

* Step number.... Displayed in the 1st read-out part.

* Command code . . Three steps are displayed simultaneously in the 2nd read-out part.

Command codes are written below the command keys and consist of symbols (Γ , \vdash , L, E) and numerals (1~9, 0).

For example:

2-4. EXPLANATION OF BASIC PROGRAMS

- * The steps for using a program to make a calculation are as follows.
 - (1) Investigate the problem and determine the formula to be used.
 - (2) Make a program for the formula (Programming).
 - (3) Store the program in the calculator (Writing in).
 - (4) Use the stored program to make the calculation (Program calculation).

EXAMPLE: To find the surface area and volume of a regular octahedron with 10 cm sides. With 7 cm sides?

With 15 cm sides?

Length of side (a)	Surface area(s)	Volume(v)
10 cm	(346.4101614) cm ²	(471.4045206) cm ³
7	(169.740979)	(161.6917505)
15	(779.4228631)	(1590.990256)

(1) Formula: Surface area = S; Volume = V; Length of side = a.

Therefore,
$$S = 2\sqrt{3}a^2$$
, $V = \frac{\sqrt{2}}{3}a^3$

(2) Programming:

a. Each item of the formula will correspond to data memory number

Surface area S in memory 1 Volume V in memory 2

Length of one side a in memory 3; therefore

$$S = 2 \sqrt{3} a^2$$
 becomes $1 = 2 \times \sqrt{3} \times 3 \times 3$;

and,
$$V = \frac{\sqrt{2}}{3}a^3$$
 becomes $2 = \sqrt{2} \div 3 \times 3 \times 3 \times 3$.

These formulas can be used without change in the program, except that K must be placed before the constants 2 and 3 stored. Consequently, the program will be:

 $1 = K2 \times K3\sqrt{\times 3 \times 3}$:

(1 (S) is the constant 2 multiplied by the square root of 3 and this multiplied twice by 3 (a).)

 $2 = K2\sqrt{\div K3 \times 3 \times 3 \times 3}$:

(2) (V) is the square root of the constant 2 divided by the constant 3 and this multiplied by 3 (a) three times.)

b. The data to be input into the formula are:

the length of one side a, so write:

ENT 3: (input is (3) (a).)

* "ENT n₁: n₂:..." are called data input message (ENT message).

c. Which are the answers to the calculations?

The answers are S (surface area) and V (volume) so write:

ANS 1: 2: (answers are 1)(S) and 2(V).)

"ANS n₁: n₂:.." are answer display messages (ANS messages).

The basic programming sequence is:

- 1. ENT message
- 2. Calculation formula
- 3. ANS message.

When we place the above programs in correct sequence for programming we get:

ENT 3:

 $1 = K 2 \times K 3 \sqrt{x} 3 \times 3$:

2 = K 2 \(\tau \cdot \) K 3 x 3 x 3 x 3 :

ANS 1:2:

(3) Writing in programs:

To write a program into the calculator:

- 1. Set the program switch at <WRITE>.
- 2. Key-in the program in correct sequence.

OPERATION READ-OUT REMARK Program switch 0. at <WRITE> (Progarm clear, O displayed). AC 000 001 E2 (Step No.1, 1) ENT (Step No.2, value 3) 002 E2 3 3 003 E2 Г5 (Step No.3, [:])

OPERATION	ran Ipor	RE	AD-	TUC	acettia	REMARK
	1	004	3	Γ5	1	(Step No.4, value 1)
		005	Γ5	1	EO	(Step No.5, 🖨)
	K	006	1	EO	L2	(Step No.6, K)
	2	007	EO	L2	2	(Step No.7, value 2)
	×	008	L2	2	E5	(Step No.8, 🖾)
	K	009	2	E5	L2	(Step No.9, K)
	3	010	E5	L2	3	(Step No.10, value 3)
	5	011	L2	3	F1	(Step No.11, 🕝)
	X	012	3	H1	E5	(Step No.12, 🖾)
	3	013	F1	E5	3	(Step No.13, value 3)
	×	014	E5	3	E5	(Step No.14, 🖾)
	3	015	3	E5	3	(Step No.15, value 3)
		016	E5	3	Γ5	(Step No.16, :)
	2	017	3	Г5	2	(Step No.17, value 2)
		018	Γ5	2	EO	(Step No.18, 🖨)
	K	019	2	EO	L2	(Step No.19, K)
	2	020	EO	L2	2	(Step No.20, value 2)
	7	021	L2	2	F1	(Step No.21, 🕝)
	2	022	2	F1	E6	(Step No.22, 👪)
	K	023	F1	E6	L2	(Step No.23, K)
	3	024	E6	L2	3	(Step No.24, value 3)
	×	025	L2	3	E5	(Step No.25, 🖾)
	3	026	3	E5	3	(Step No.26, value 3)
	×	027	E5	3	E5	(Step No.27, 🖾)
	3	028	3	E5	3	(Step No.28, value 3)
	×	029	E5	3	E5	(Step No.29, 🖾)
	3	030	3	E5	3	(Step No.30, value 3)
	· [031	E5	3	Γ5	(Step No.31, 🗈)
	ANS	032	3	Γ5	E3	(Step No.32, 🝱)
	1	033	Γ5	E3	1	(Step No.33, value 1)
	: [034	E3	1	Γ5	(Step No.34, :)
	2	035	1	Γ5	2	(Step No.35, value 2)
	: [036	Γ5	2	Γ5	(Step No.36, :)

This completes the programming.

^{*} In the <WRITE> mode, each time a key is pressed, that command is stored in the memory as a program. The number of step and the code number of the command written in, together with the code number of the previous

two commands, are displayed simultaneously in the read-out.

(4) Program calculation:

To perform a calculation using the program:

- Set the program switch at <COMP> position.
- (When using a program including trigonometric or inverse trigonometric functions you must also set the angular mode selector as required.)
- 2. Press the STA key.
- The answer is displayed by the memory number when the limit lamp lights.
 (After reading out the answer, press or to advance the program.)

 Press A if desired to repeat the program calculation.
- 6. Press AC to stop the program calculation.

OPERATION	READ-OUT	REMARK
Program switch at <comp></comp>	ENT 3	0.
at COIVIF	→ Memory ③ (a	z) input
10 🖾	MS 1 346.410	1614
(To advance the	→ Memory ① (S	S) answer
program)	(MS) 2 471.404!	
(To repeat the	→ Memory ② (V	/) answer
calculation) 5TA	OM 3	O. (Memory (3) input)
(If one side = 7cm) 7 🖾	MS 1 169.740	
ic so o com star a 🚾	MS 2 161.6917	
8TA	(INT) 3	O.
(If one side = 15 🖽	MS 1 779.4228	8631
15 cm)	ANS 2 1590.990	0256
(Program calculation 🚾		O. Chadaso est squarto
completed)	T116-132	A 350 BYAPTA C 354

In program calculations, one advances in accordance with the lamps and the memory numbers displayed in the 1st read-out part to find the solution to the problem. The program can be advanced using either the or the keys.

2-5. HOW TO CHEK, ERASE AND CHANGE PROGRAMS

EXAMPLE: To find the surface area and volume of a regular tetrahedron with sides 10cm long. If sides are 7.5cm? If sides are 20cm?

Length of side (a)	Surface area(s)	Volume(v)
10 cm	(173.2050807) cm ²	(117.8511301) cm ³
7.5	(97.42785789)	(49.71844553)
20	(692.8203228)	(942.8090412)

- (1) Formula: Surface area = S; Volume = V; Length of side = a; therefore. $S = \sqrt{3}a^2$, $V = \frac{\sqrt{2}}{12}a^3$
- (2) **Programming:** S in memory(1): V in memory(2): a in memory(3): therefore. FNT 3: $1 = K3\sqrt{x}3x3$: 2 = K2 / + K12 x 3 x 3 x 3: ANS 1:2:

This program may be written into the calculator from the beginning but it closely resembles the octahedron program on page 17 so that program can be revised if the methods of program checking, erasing, correction, etc., are understood

Program check and changes:

Program check is recalling the program written into the program memories to the display to confirm the contents. Each time the key is pressed in the <WRITE> mode, the step numbers and contents are displayed one at a time. just as when the program was written.

The required steps are displayed in program check also to make use, erase or change previously stored programs.

If we compare the two programs:

Erase the 2nd item "K2 x" of the octahedron program.

Change the octahedron program from the 3rd item "K2√÷ K".

OPERATION		REA	D-O	UT	5	REMARK	
Program switch		labor.	-	-ond	0.	prominents	
at <write></write>	CHE	001	15.629	Lact r	E2	(Step No.1, 🖼)	
	CHE	002		E2	3	(Step No.2, value 3)	
	CHIC	003	E2	3	Γ5	(Step No.3, :)	
	CHK	004	3	Γ5	1	(Step No.4, value 1)	
	CHE	005	Γ5	1	EO	(Step No.5, 🗖)	
	CHE	006	1	EO	L2	(Step No.6, K)	

034 Γ5 E3 1 (Step No.34, value 1) 1 035 **E3** Γ5 1

(Step No.35, :) 2 036 1 Γ5 2 (Step No.36, value 2) (Step No.37, [:]) 037 Γ5 2 Γ5

(Look at the start of one 038 2 Γ5 00 (Step No.38, no command) the program)

(Look at the start of one 039 Γ5 00 00 (Step No.39, no command) the program)

No parts of the program are displayed as no command (00).

This completes the changing of the program.

Making a program check:

1. Set the program switch at <WRITE>.

- Each time sis depressed, step numbers and command codes are displayed for confirmation. (Steps containing no command are displayed as "00" or blank.)
- In order to make an addition to a program already written in, erase the command in the step where the addition is to be made and write in the new command by pressing the proper keys. Previous programs can be used when steps are erased or the number of steps is reduced but when the number of steps is increased the point from where the addition starts to the end must be written in again.

How to erase and change programs:

- 1. Advance to the required step using program check.
- Display the command to be erased and press
 . (Using , at the time the program is backed up the command that
- leaves the display is erased and becomes no command.)

 3. Display the step just before the one to be changed and then write in the altered program.
- For corrections, display the step just before the one to be corrected and write in the new command.
- Program calculations except the message (IF M = m : A : B : C :) are not affected even if erased steps are in the middle of a program.

(4) Program calculation

OPERATION		REAL	D-OUT	REMARK
Program switch	STA	ENT 3	a oso 0.	(Memory(3)(a) input)
at <comp></comp>	10	ANS 1		(Memory 1)(s) answer)
	AMS	ans 2	117.8511301	(Memory(2)(V) answer)
(To repeat the	STA	® 3	0.	(Memory(3)(a) input)
calculation)		The fo	llowing is omited.	9,EMAP4

2-6. PROGRAMMING RULES

- * There are basic programming rules. Calculations cannot be performed if these rules are not observed.
- 1) Data input message (ENT message)
- The format is [3] M1 : M2 : M3 :
- M₁, M₂, M₃, etc., are memory numbers 1 ~ 9, 0 and I, IM.
- The sequence of memory numbers and I, IM are not determined.
- When inputting data into the memory, the previously stored values are erased and the new values entered.

2) Calculation message

- In function calculations, the function command must be written in after the function data memory number, as in M M M Sin :.
- M₁, M₂, etc., are the same as ENT messages. Constants can also be used after = .

Example: When the memory contents are $\bigcirc = 10.1$, $\bigcirc = 0.81$, and $\bigcirc = 8$, $(10.1 + 0.81) \times 8 - 10.1$ is calculated on the formula $1 = 2 + 3 \times 4 - 2$: and the answer 77.18 is put into memory \bigcirc .

 and function commands are calculated immediately and used in arithmetic operations. (is the same as an arithmetic operation.)

Example: When memory contents are 1=1000, 2=30, and 4=2 (with "DEG"), (sin 30° x log 1000)⁻² is calculated on the formula 7 = 2 sin x1 log x^{3} 4+/—: and the answer 0.444... is put into memory 3.

- The contents of the memories used in the calculation are not changed, excluding the memory to the left of
- There is no limit to the length (number of steps) of a calculation message.
- Complex formulas can be broken down into several simpler formulas.

Example: $x = \sqrt{\frac{(A \times B) + (C \times D)}{B + D}}$ A in memory ①
B in memory ②
C in memory ③

If we take:

(A \times B) in memory ⑤
(C \times D) in memory ⑥
(B + D) in memory ⑦

Write $5 = 1 \times 2 :
6 = 3 \times 4 :
7 = 2 + 4 :
8 = 5 + 6 ÷ 7 :$

 Any number of constants can be used in one calculation message but one constant is limited to a 10-digit value.

 $0 = 8\sqrt{ }$:

(When w is used, the mantissa is 8 digits and the exponent 2 digits.)

• Constant calculations such as

• ★ ★ , ★ ★ can not be assembled in programs.

When multiple calculation commands and function commands are assembled continuously, calculations are made in the same way as in manual calculations.

Answer display message

- The format is Ms Mi : Ms : Ms :
- Mel, Mel, Mel, etc., are the data memory numbers (① ~ ⑨, ⑩) and IM.
 (ANS I: is impossible.)
- The sequence for getting the answer is not determined.

* Next, we will make actual use of the above rules in making a program.

2-7. HOW TO USE THE MJ (MANUAL JUMP)

Example: In triangle mensuration, with a baseline of 50m, find the angles to points X, Y and Z. What are the distances in meters of PX, PY and PZ shown in the table below?

1	Point	Baseline A	Angle α	Angle β	Distance x
	X	50 m	41°	76°	(36.815) ^m
	Y	50	61°32′	49°25′	(47.066)
	Z	50	50°06'03"	37°53′	(38.382)

(1) Formula:

$$x = \frac{Ax \sin \alpha}{Sin (180^{\circ} - \alpha - \beta)}$$

(2) Memory:

Baseline A in memory ①
Angle α in memory ②
Angle β in memory ③
Angle $(180^\circ - \alpha - \beta)$ in memory ④
Distance X in memory ⑤

(3) Programming:

ENT 1 : 2 : 3 : 4 = K180-2-3 : 5 = 1x2 sin ÷ 4 sin : ANS 5 :

* In this program it is necessary to input the baseline length for each calcualtion. MJ ENT 2:3:

> 4 = K180-2-3: $5 = 1x2 \sin \div 4 \sin :$

ANS 5:

Make in this way.

(4) Program calculation:

OPERATION

RAED-OUT

REMARK

Program switch at <COMP>

STA	en 1	0.	(A input)
50 E	(ENT) 2	0.	(α input)
41 🖾	ENT 3	0.	(β input)
76 m	(ANS) 5	36.81561331	(Distance PX)
MJ	(ENT) 2	0.	(α input)

Jump to the MJ of the program with this key.

611-32-1	(MT) 3	Carri ew podażo O.	In grounding
49112511	(AHS) 5	47.06613813	(Distance PY)
514	ENT 1	0.	THIS MERCE
William to area later and process	STA is to	ouched by error.	M U ,M saper
MJ	(ENT) 2	0.	
The man is the said of the sai	Jump t	o MJ with memory	①as it is.
5011611311	ENT 3	0.	ekirkesser 193
37 53 6	(ANS) 5	38.38247737	(Distance PZ)
(Program calculation completed)	700 3	0.	0.50

If the baseline changes input from the start with MA, and if the baseline is the same input from the angle using MA.

MJ

- If M is pressed when a program is stopped (with (MT), (AMS)) while performing a calculation, a jump is made up to the written in MJ (both backward and forward).
- When more than one Mare written in, the jump is made to the final one and the others are ignored.
- If w is pressed when w is not written into the program, the program will not operate correctly.

2-8. PROGRAM TO FIND TOTALS (∑)

Example: There are several triangles, the lengths of the sides of which we know. Find the area of each triangle and the total area.

Triangle	Side a	Side b	Side c	Area S
Α	12 ^m	15 ^m	19 ^m	(89.977) m ²
В	19	18.5	25	(174.657)
С	25	14	21.3	(148.972)
		Electrical Co.	Total	(413.607)

(1) Formula:

$$S = \sqrt{S(S-a) (S-b) (S-c)}$$

$$S = \frac{a+b+c}{2}$$

(2) Memory:

a in the memory 1 S in the memory 4

b in the memory (S-a) in the memory (S-b) in the memory (S-b) in the memory (S-b)

S in the memory (S-c) in the memory values within the radical $\rightarrow (S-c)$

* In programs for totaling we indicate the memory used for totaling by M and the totaled memory as m, so we get M = M + m:.

This means that the M to which a new answer with m is added becomes a new M. 0 must always be placed before M. To make M into 0, assemble as $M = K \ 0$: or else use we. Thus, if we put the total area of the above calculation in memory (5):

(3) Programming:

Here we vary the program sequence and use MJ.

and the total becomes 0.

How to perform totaling calculations

- Prepare memory M for use in totaling. M = M+m: or M = m+M: is used. (m is the data or answer memory.)
- This totaling use memory must be made 0 before starting the totaling.
- 3). How to make the totaling memory 0.
 - Do not include a clear command in the program but press the we key before entering the first data of the calculation.
 - b. A clear command such as we , etc., is included in the first part of the program and below the 2nd line we is not red. There are also methods using wu or of (of is explained below).

2-9. HOW TO USE GOTO and ST# (UNCONDITIONAL JUMP)

The program given above for finding the total surface area of triangles involves pressing who once for each triangle to make a jump to after who but, instead of pressing the key, if the well command and well are programmed in front of the jump this can be done automatically without pressing well each time. This is an unconditional jump. By adding memory numbers after without the same programmed.

Altering the previous program.

In this program calculation, press the keys in accordance with the indications of the displayed (NT), (ANS) lamps. If the MJ key is considered the total key, anyone can understand the procedure and perform the calculations.

GOTO ST#

- 1). By putting in GOTO N:a jump can be made to the program ST#N:.
- 2). N is a natural number from 1 to 9.0.
- 3). GOTON:, and ST#N: can be added at any position in the program. A maximum of 10 jumps can be used in accordance with the N number
- 4). GOTO N1: is effective no matter how many times used but ST# N1: can only be used once. (When ST# N1: is used more than once, only the last is effective.)
- 5). When there is no ST# N1: to correspond to GOTO N1: the program calculation is stopped.

2-10. HOW TO USE IF (CONDITIONAL JUMP)

Example: To calculate the square root of the quadratic equation $ax^2 + bx + c$ = 0. The way the answer is shown will differ depending on the formula used

Problem	Local Arts	Coefficien	to avode	he nextern gran
Flobleiii	a	b	С	Answer
$8x^2 + 6x + 1 = 0$	8	6	1	(-0.25, -0.5)
$2x^2 - 28x + 98 = 0$	2	-28	98	(7)
$2x^2 + 26x + 89 = 0$	2	26	89	$(-6.5 \pm 1.5i)$

1) Formula:

$$x = \frac{-b \pm \sqrt{D}}{2a}$$

 $D = b^2 - 4ac$

2) Memory:

Coefficient a) in memory (1)

b) in memory (2)

c) in memory (3)

Separate formula D in memory (4)

Answer (actual root) in memory (5), (6)

Answer (compound root) in memory (7)

Answer (imaginary root) { real number part in memory (8) imaginary number part in memory (9)

The conditional jump is jumping to a different place in accordance with the conditions after comparing the size of the values, IF and ST are used. Conditional jump is IF M = m : A : B : C :. This compares M and m: when M is less than m the jump is to ST#A; when M = m the jump is to ST#B; and when M is larger than m the jump is to ST#C.

(3) Programming:

(4) Program calculation:

* In any case, the answer can be displayed merely by advancing the program. If advance is continued, a return is made to input of the coefficient a) with 1.

IF

- By programming IF M = m : A : B : C : , the place to which a jump is to be made can be made by comparing M and m. If M<m the jump is to ST#A; if M = m the jump is to ST#B; if M>m the jump is to ST#C.
- M and m are data memory numbers, I, IM and constant. A, B and C are natural numbers 1~9,0. If M becomes a negative number when m is a positive constant or I, program IF m = M: A: B:C:
- When M≤m, A and B are the same values; when M≤m, B and C are the same values. A, B and C are written in.
- 4. A, B and C can be the same as the ST# for GOTO.
- When calculations are performed without a jump destination, the program calculation is stopped.

2-11. HOW TO USE I AND IM (INDIRECT ADDRESS)

Example: There are 9 items from A to I. Data is input in sequence starting with A. While the data is stored it is also totaled.

Item	Data
A	25.3
В	63.7
C	6.0
D	57.9
E	70.6
F	15.2
G	50.8
Н	41.5
-1	32.1
Total	363.1

(1) Formula: Omitted

(2) Memory: A data in the memory ①

B data in the memory ②
C data in the memory ③

I data in the memory

Data total in the memory 10

(3) Programming:

MAC (To get total) ENT 1: 2: 3: 4: 5:

6: 7: 8: 9:

0 = 1 + 2 + 3 + 4 + 5

+6+7+8+9:

ANS 0:

This program is arranged in memories ① through ⑨ so count is performed from 1. If the count number is made the same as the memory number it is simpler. The I-memory performs the count, The IIII command is used to employ the count number as the memory number. In other words, the number of the memory to be used is put into the I-memory and, during the calculation, IIII is used instead of that number.

For example, I = K5:

 $IM = 2 \times 3$: is the same as $5 = 2 \times 3$:

Or, with I = I + K1: the \blacksquare memory counts 1 for each time the program is read. Therefore, the previous program is written as:

- All memories, including I , cleared with W.
- I = I + K1: and (0 + 1) is put into the I-memory.
- Since 1 is in the I-memory, ENT IM: is the same as ENT 1: and 0 = 0 + IM: is the same as 0 + 1;.
- The 2nd time 1 is in the I-memory so I = I + K1:
 is put into the I-memory as (1 + 1)
- I is 2 so ENT IM: is the same as NET 2:. Also,
 0 = 0 + IM: is the same as 0 = 0 + 2:.
- The following is the same until MJ is pressed.

I and IM

- When the memory number of the memory to be used is put into the I memory, IM can be used instead of that number.
- The I memory stores the natural numbers 1~9, 0. For other values only the first digit is stored (1 if 10).
- When the calculator reads ENT I:, the ENT lamp and "E" light up on the 1st read-out part (this is not an error).
- 4. The message ANS I: can not be programmed.

2-12. HOW TO USE (SUB#) SUBROUTINE

Example: There are m parallel roads going east and west and n going north and south. In going from northeast corner A to southwest corner B how many roads will be used if the shortest path is taken?

(1) Formula: Numbers to be assembled = $\frac{(m+n-2)!}{(m-1)! \times (n-1)!}$

(2) Memory: m in the (m-1)! in the (m+n-2) in the memory (5) memory (3) n in the (n-1)! in the memory (4) Answer in the memory (6)

* This calculation is normally performed as follows.

* The same calculation can be performed by making only the factorial calculations independent.

As shown in this diagram, the flow $\textcircled{A} \rightarrow \textcircled{B} \rightarrow \textcircled{C} \rightarrow \textcircled{D}$ is called the main routine. Parts made independent, such as S, and used as required in the main routine are called subroutines.

Program to find the factorial n! (n \rightarrow memory 0, answer \rightarrow 9)

ENT 0: (Data n in memory ①)
9 = K1: (First enter 1 in the answer)

→ ST#8: IF 0 = K1 : 0 : 0 : 9 : (If n is larger than 1, to ST#9; if n = 1

or n<1, to ST#0.)

ST#9: $9 = 9 \times 0$: (Multiply the answer by n) 0 = 0 - K1: (n reduced by 1)

0 = 0 - K1: (n reduced by 1) GOTO 8: (To ST#8 = repeat)

ST#0: ANS 9 : (Answer display)

The above is a program for independent factorial calculations but, when this is put in a program as a subroutine, a subroutine number (SUB# $\!N$:) is added and it is put at the end of the main routine. When calling out a subroutine from the main routine, use GOTO $\!N$:

When the following program (subroutine program) is executed to the end, SUB#N: returns automatically to the place where the main routine jumped.

(3) Programming:

→ ST#2 : ENT 1 : 2 : 0 = 1 - K1 : GOTO 1 :

3 = 9 : 0 = 2 - K1 :

GOTO 1:

4 = 9: 0 = 1 + 2 - K2:

GOTO 1: 5 = 9:

6 = 5 ÷ 3 ÷ 4 :

GOTO 2 :

SUB#1: 9 = K1: ST#8 : IF O = K1:0:0:9:

 $ST#9 : 9 = 9 \times 0 : 0 = 0 - K1 :$

GOTO 8:

ST#0 :

(m and n input) (m - 1 in ①)

(To subroutine) (Answer to m-1 factorial in 3)

 $(n-1 \text{ in } \bigcirc)$ (To subroutine)

(Answer to n - 1 factorial in 4)

 $(m + n - 2 \text{ in } \bigcirc)$ (To subroutine)

(m + n - 2 factorial in 4)

(Calculation of combined numbers)
(Displayof answer of combined number)

(To start to repeat)

Subroutine program (Compared to the above, data is set by the main routine so ENT 0: is taken. The answers to the respective factorials need not be seen so ANS 9: is

taken.)

2-13. PROGRAM CALCULATION

COMP>

m
m
n
an
→ answer

(Repea

→ (Repeat from m 🖾)

SUB#

- When SUB# N : is placed at the beginning of a program and that program is put at the end of a main program, it is called a subroutine program.
- When it is desired to execute a subroutine program in a main program, assemble GOTO N:. The N number is the same as the N of SUB# N:. A conditional jump (IF) can also be made to a subroutine.
- 3. Up to 10 subroutines can be assembled but the same number as the N in SUB# N: cannot be used.

 (Consequently, and sum together will total 10.)

- 4. When a subroutine program has been executed (go to the next SUB# N : or read to the 127th step), an automatic return is made to the step after the one from which the main program jumped. (This is not ST# N : .)
- 5. The destination of @ and F jumps in a subroutine are in that subroutine. The destination of a @ of F jump by a main routine cannot be in a subroutine.
- 6. A subroutine cannot be called by another subroutine.
- * Special ways of using SUBP Using to make program additions.
- * When a change is made in a program already stored in the calculator, the number of steps is increased (insert no command 00 when the number of steps is reduced), or an addition is made to the program, we can use SUB# to avoid re-entering all of the program after the changed part. This is especially convenient when changes are made near the start of a long program.

The method

- 1. Change to GOTO N: one line before or after the addition. (When this 1 line is 3 steps or more, enter 00 in the remainder.)
- Write in the additional program at the end of the program, after SUB#N: Do not forget to enter the erased line at the beginning and end of the added part.

EXAMPLE:

ENT 1: 2: 3: Add
$$0 = 1 + 2 + 3 \div K2$$
:
$$\begin{pmatrix} 6 = K2 \times 1 \times 2 \times 3 \cos : \\ 7 = 2 \times 2 : \\ 8 = 1 \times 1 + 7 - 6 : \\ 3 = 8 \sqrt{:} \\ ANS 3: \\ ANS 3: \end{pmatrix}$$
ANS 5: GOTO 2:

- * Change or addition
- 1) Change ENT 1: 2: 3: to GOTO 0: and 4-step no command.
- 2) Write from SUB# 0: ENT 1: 2: 3: to added program ----6=to ANS 3: after the final GOTO 2: of the program.

Note: The above change is made when the angle included by two sides (angle in memory ③ is included in the area calculation. The other side is displayed after the calculation and then the area is displayed.

2-14. OPERATION OF THE PROGRAM SWITCH AT (-)

- When performing automatic calculations (program calculations) using a program stored in the calculator, the program switch must be set at COMP) is pressed; otherwise, calculations will not be performed.
- 2. For program calculations either the (ENT) or the (ANS) lamp will light.
- 3. When As is pressed in program calculation mode, the program preparation mode will first be entered and the sa and sa keys will not operate. (The sam and sa lamps also go out.)
- The program preparation mode is also entered when a program is executed breaking the programming rules.
- Manual arithmetic and function calculations are possible in either program mode or program preparation mode but the data memories and independent memory cannot be used.
 - (To see the contents of the data memories, set to <MANUAL>. Because we clears all the data memories in <COMP>, both the data and the answer are erased when it is pressed during a calculation.)
- When an answer is displayed in the program calculation mode ((ANS) lamp lit), an entry is made and a program executed, the content of the memory number changes to the entered value.

2-15. WRITING FLOW CHARTS

Programs are easier to write when the sequence of the calculation is arranged clearly. This calculation sequence is called the flow chart and the symbols used are determined.

The following is the flow chart for the equation on page 28.

· Content of memories used

	Coefficient a
3	Coefficient b
3	Coefficient c
4	Decision formula D
(5))
6	Actual root
(5) (6) (7) (8)	Compound root
8	Imaginary root real number part
(9)	imaginary number part

Note: Because the ST# go from above in sequence the contents are the same but this is not the samd as the program on page 29.

2-16. CONCLUSION

Program calculation sequence

- Investigate the problem carefully and determine the formula required to obtain the answer.
- Clarify the procedure required to obtain the answer to the calculation and write this procedure in a flow chart.
- 3. Program the formula following the flow chart. (Programming)
- 4. Check the program.
- 5. Write the program into the calculator (store in the calculator).
- 6. Check the program for errors.
- 7. Use the program to perform the calculation obtain the answer.

BASIC PROGRAM TECHNIQUE

1. Mixed calculation

Example (1).

A = (B x C) + (D x E) $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ 1 2 3 4 5 \rightarrow The basic $\begin{cases} 6 = 2 \times 3 : \text{ Advance one step} \\ 7 = 4 \times 5 : \boxed{6 = 2 \times 3 :} \\ 1 = 6 + 7 : \boxed{1 = 4 \times 5 + 6 :} \end{cases}$

When we advance one step the answer can remain in memory 1 so, $1 = 2 \times 3$; put 2×3 memory 1

 $1 = 4 \times 5 + 1$: put items added to 4×5 in 1 again in 1.

* In the basic form all the contents remain in the memories so there is the advantage of easy checking later.

Example (2).

Because memory (4) is not used this becomes $1 = 2 \times 3$:

- * In extraction calculations, the root is stored in one of the memories.
- * The same for finding functions of a calculation result $(\log \frac{123}{456}, \text{etc})$.

Example (3). $A = \frac{B}{C + D} \xrightarrow{\text{The basic}}
\begin{cases}
5 = 3 + 4 : \\
1 = 2 \div 5 :
\end{cases}$ Because memory $\begin{cases}
1 = 3 + 4 : \\
1 = 2 \div 1 :
\end{cases}$ Because memory $\begin{cases}
1 = 3 + 4 : \\
1 = 2 \div 1 :
\end{cases}$

* When the denominator is sum or difference this is put into the memory. 2. xy

Example (1)
$$x = A^2 \Rightarrow 5 = 1x^y \text{K2}$$
:
(5) (1)

Rather than this program, 5 = 1 x 1: is easier to understand and there are few steps.

Example (2)

xample (2)

$$X = A^2 + B^2 \implies 5 = 1 \times 1$$
:
 $\psi \quad \psi \quad \psi \qquad 5 = 2 \times 2 + 5$:

is used in the same way as the arithmetic operations so caution is required when assembling in continued calculations.

3. Totals, differences, etc. (Write as Σ)

$$9 = 9 + 1$$
: Sum of square value $\rightarrow 9 = 1 \times 1 + 9$:

Σ memory Data or answer memory

It is necessary to make the Σ memory 0 in the beginning.

4. Accumulation (Write as II)

$$\frac{9}{7} = \frac{9}{7} \times \frac{1}{7}$$

Data or answer memory

It is necessary to make the II memory I in the beginning.

5. Count

Count memory Constant

* The number of counts can be checked with IF in repeat calculation, etc., when the repeat is automatically stopped after the required number of calculations.

2-17. REFERENCE PROGRAMS

CASIO fx-201P PROGRAM SHEET

Program Name	Classifi	cation total	5							C	ate		N	lo.	1											
Formula (examples using	actual v	alues are or	the	T				М	emo	ry co	onte	nt		UV.												
following page)				(Dc	ode	1 tot	tal	8 -	(6) c	ode	6 to	tal	III X											
				(2) C	ode	2 tot	tal		(Do	ode	7 to	tal	-											
Input data in order and fir of 9 classifications		for a maxir	mum	(3) C	ode	3 tot	tal	300	(8 c	ode	8 to	tal												
				(D C	ode	4 tot	tal	1,7	-	9 c															
							5 tot	200	aac	+	0 м	emo		xcha	inge											
Calculation flow chart		ST# M.	1	1012			O G						70101	1 (0)	Ste											
All memories cleared	6-1	100	MAC		CONT.		- 31	1.5			1	100	1	6.0	1											
➤ ST#1	To get total	ST#1:	nom	1	K	311	6		10	V		16	1													
Classification code	MJ	- 1000	ENT	1	:			11		1					7											
Change classification memory			0	-	IM	:	0.5	100	94	1	Or.	81	200	(J)	07											
Data /	es K		ENT	IM	:						11	10	1	10.1	14											
Classification total	100		IM	=	IM	+	0	:			1															
GoTo		95 80		GoTo	1	:	W		10		1		¥.	, iii		23										
MJ							MJ							1	1	000	-		7.7							
Code/Total to 0														0	-	к	0	:								
													1	=	0	:		,					3		33	
➤ ST#2			ST#2:											3	1											
Code count			95 (0)				1	=	1	+	K	1	:	8	10	ber d	1		43							
Classification total				a turk	ANS	IM	1		101	19	1		208	n is		10										
Overall total	quat	Which	0	=	0	+	IM	:		fi	FNS	i y			52											
code <9 code 9?	de >9		IF	1	=	K	9	:	2	:	3	:	3	;												
ST#3 code=	•	ST#3:																								
Overall total	9		ANS	0	:					115	111				70											
					-	-		_																		
	İ												en i													
										2	-															

Performing program calculations is explained on the next page.

CASIO fx-201P Program calculation operation manual

Calculation exa	mple	act	ual cal	culation	table, values, etc.	Memory no.	When ENT lamp is lit (data)	When ANS lame is lit (answer)
classification	or the fr	-	and p		-	1	code 1 data	code 1 total
code	Dat			Code	Total			uodo i total
3	1,8			1	(5,600)	2	code 2 data	code 2 total
2	2,0			2	(3,450)	3	code 3 data	code 3 total
9	3,6		- 1	4	(8,010)	-	code 5 data	code 3 total
4	6,1			5	(8,350)	4	code 4 data	code 4 total
2 8	1,45		•	6	(3,190)			
5	2,23			8	(4,270) (7,180)	5	code 5 data	code 5 total
3	5,36			9	(3,600)	6	code 6 data	code 6 total
5	4,87			total (50,860)	-	oode o data	code o total
6 7	3,190 2,310		L	-		7	code 7 data	code 7 total
	2,50				parentheses are	8	code 8 data	
7	1,96		aı	nswers		0	code 8 data	code 8 total
	3,30					9	code 9 data	code 9 total
	1,25							
4	1,08	0				0	FRITZY	data total
						E (I-memory)	classification code	I Date
Preparation: 1. Write-in program		Procedure	Lamp	Memory No.	Display mea	ning	Key operation	Remarks
* Program switch		1					START]	
WRIT	E	2	ENT	E	classification co	de innut	3 💷)
		3	ENT	3	data input	de input		code is 3 so
* Key-in in the		4	ENT	E			1850	J 3 light
sequence of the program	- 1	10.50		-	classification co	de input	1 ENT	code is 1 so
2. Program calculati	ion	5	ENT	1	data input		3100 EN	1 light
Program switch		6	ENT	E	repeat the follo	wing from	procedure 2	
COMP		7				When all	data end, MJ	
		8	ANS	1	code 1 total		ANS	
The following in		9	ANS	2	code 2 total		ANS	Transfer of the last
the sequence	1	10	ANS	3	code 3 total	-	ANS	
given at the right		-	ANS	4	code 4 total			
	1		ANS	5			ANS	
	+				code 5 total		ANS	
	1		ANS	6	code 6 total		AKS	Allow Co.
	-	1	ANS	7	code 7 total	200	ANS	
		15	ANS	8	code 8 total		ANS	-66
	L	16	ANS	9	code 9 total		ANS	
		17	ANS	0	all data total		end of calculation	AC
		18			1 OM6 2		3.74	
	1	19				_		
	1	20				-		31.00
	-	21			-			
	+			-				
	-	22	-					
	-	23						
		24						
		25						

Program name Prediction by reg	Prediction by regression analysis									ite		No	2
Formula (examples using actual v	alues are o	n	T	-			Me	mor	y co	nter	nt		The state of
the following page) If the regressing straight line is			0	D	dat	ta	x	-1-0	1	6	Σ	хy	
$B = \frac{n\Sigma xy - \Sigma x \cdot \Sigma y}{n\Sigma x^2 - (\Sigma x)^2}$	+ Bx,		C	2)	dat	ta	y		(n			
$A = \frac{1}{n} (\Sigma y - B \cdot \Sigma x)$			G	3)	100	Σ		Hai	(8)		ermir fficie	
Predicted value \hat{y} is $\hat{y} = A + Bx$			(D	ě	Σ)	,		(9		ermir fficie	
COM Frage CHARLES			G	5)	-	Σλ	2		(0			
Calculation flow chart	ST#	MJ					mess					-9	Ste
All memories cleared		MAC					1	200					
→ ST#1	ST#1:	in N.C.											2
Data x, y — when-	2009	ENT	1	:	2	:							
all data input		3		3	+	1	:						
complete		4		4	+	2	:				1	100	2
Σx		5		1	×	1	+	5	:		100	H	100
Σy Σx^2 calculation	-	6	-	1	x	2	+	6			23	H	3
Σχγ	-			7	+	k	1	:	-				
GoTo n count	- 4 100	GoTo	1	:	-	^		·			-		4
4	-		1		-	-	149			-		-	4
MJ	-	MJ						-					100
Coefficient A calculation	-	8	-	3	×	3	:					1,	
Coefficient B		8	=	7	×	5	-	8	:				6
		9	=	3	×	4	3						94 195
		9	=	7	×	6	-	9	÷	8	:		7
		8	=	9	×	3	+/-	+	4	+	7	:	
Coefficient A, B		ANS	8	:	9	:							9
➤ ST#2	ST#2:												
Prediction x		ENT	1		-								10
ŷ calculation		2	-	1	×	9	+	8	:				
Prediction value ŷ		ANS	2	:									
GoTo			2	;									11
	-	+		+					-				
									8				
									2.				

Performing program calculations is explained on the next page.

CASIO fx-201P Program calculation operation manual

Calculation example	e act	ual cale	culation t	table, values, etc.	Memory no.	When EN is lit (data	T lamp	When ANS lamp is lit (answer)
Year (x) 1966	Sales amo		(Unit S	(1,000)	1	yea	,	
1967 1968	781. 855.	3	edilen		2	amou	int	predicted
1969	1,228.			1999				amount
1970	1,432.	4	1		3			1
1971 1972	1,574.			36	4	Same?	-	7
1973 1974	2,069. 1,986.		1000		5	4.6	196	377
1975	2,290.		del ans	0.1			-	
1976	(2,451.	2)	1		6	2.00		
1977 1978	(2,629.		Predi	ction	7	The state of	word to	enteredical for
y = A + Bx	A = (-6,6	19.9)	for 0) year	8	1472		determined coefficient A
	3 = (1	77.86)	trend	d for year	9	71 670		determined coefficient B
					0			
					E (1-memory	1,000		
Preparation:	Procedure	Lamp	Memory No.	Display mean	-	Key opera	ation	Remarks
Write-in program Program switch	1					START	r)	
WRITE	2	ENT	1	year input	77.7	66	E	24
	3	ENT	2	amount input		813.6	_	-
* Key-in in the	4	ENT	1	year input	TOTAL TOTAL	67	[13]	
sequence of the program	5	ENT	2	amount input		781.3	_	
2. Program calculation	6	ENT	1 .	('epi	at from	procedure 2	_	
* Program switch COMP	7		- 1			data end.	-	
COMP	8	ANS	8	determined coef			03	
	9	ANS	9	determined coef			ANS	
 The following in the sequence 	10	ENT	1	prediction year i	_	76		
given at the right	11	ANS	2	prediction amou		1000	DES .	
A state of the sta	12	ENT	1	prediction year i	-	77	ENI	
Facilities of the	13	ANS	2	prediction amou	Contract of the Contract of th		ANS	
100	14	ENT	1	repeat from proc	-	1.7.		
and the second	15			-045	-	end of calcu	ulation	[AC]
week (I y	16			0.8,40	1	and or card	and cross	
adoptivity () to the	17			Marine e	10.	RG KG-	-	50 A
MANAGE STATE	18			Arresto I			1	
TO THE WORLD	19			Local State of the		AT U		
tope of the or	20			femal = 1		103 To 1		
September of the	21			- AMERICA		56.	-	
and the late of the second	22			75100202			-	10000
	23					6		75 project
	24	-	-	111.718	-		-	
	25	-	-		-	7540.01		

CASI		~ 21	/11		v	OI.	M	VI	O	ıL	-'							
Program name Area and leng	th of or	ne side (of an n-sid	ed r	egul	ar p	olyg	on		d	late	9	Ne	3				
Formula				Γ				Me	emoi	y o	onte	nt	-					
			f one side	0)	radio	us of	circ	le	0	5)	1 Jy		¥ T				
1	and area regular p inside a	polygor		2 number of sides of polygon n						0								
Area S	radius r):		3)	α (=	36	30	8.5	0	B)	19						
	$S = \frac{nr^2}{2}$	ii 2 sin α		4		leng side	th of	one	210	(9							
	$\alpha = \frac{360}{n}$	_)		6) ;		S) of lar p		on	0	0	Yho	45.0		-			
Calculation flow chart		ST#	MJ	1			O G								Step			
► ST#1	5	ST#1:			v s	00		a	sac		- 1				Di.			
Radius r and n	7	p. 1	ENT	1	:	2	:				-							
1 1			3	-	K	3	6	0	÷	2	:				17			
		- 1	4	=	3	÷	K	2	:									
a calculation			4	-	к	2	x	1	x	4	sin	1			34			
S / Calculation		yiing	5	=	1	x	1	x	2	x	3	sin	÷	-				
	-			k	2	:	-											
a, S			ANS	4	:	5	1	100	-			717	17		-			
GoTo			GoTo	1	;							D.A.			56			
								100							1			
	-	of Panicy						165			-							
	200 1	meth!										-		-	9. 7			
	-1			1				7.5					8	8	1			
	- T. C.		200					150						-				

Preparation : 1. Write-in program	Procedure	Lamp	Memory No.	Display meaning	Key operation	Remarks
* Program switch	1	- 3	W. Con	State of Sta	START	
WRITE	2	ENT	1	r input	10 EN	radius 10 cm
	3	ENT	2	n input	7 ENT	for regular heptagon
Key-in in the sequence of the	4	ANS	4	a display	- AKS	a= 8.6776748 cm
program	5	ANS	5	S display	ANS	S= 273.641018 cm ²
2. Program calculation	6	ENT	1	r input	12 ENF	radius 12 cm
* Program switch COMP	7	ENT	2	n input	8 EN	for regular octagon
	8	ANS	4	a display	ANS	a= 9.18440232 cm
* Angular mode	9	ANS	5	S display	ANS	S=407.2935052cm ²
selector: "DEG"	10	ENT	1	repeat form	n procedure 2	
The following in the sequence	11				end of calcula	ation AC
given at the right	12				7 86	

Preparation: 1. Write-in program	Procedure	Lamp	Memory No.	Display meaning	Key operation	Remarks
* Program switch WRITE	1				START	denotes the said.
	2	ENT	1	Vo input	30	initial velocity 30m/s
* Key-in in the	3	ENT	2	θ input	50 EN	angle 50°, time
sequence of the program	4	ENT	3	time period S input	● 5 🖼	period 0.5 sec.
2. Program calculation	5	ANS	5	height after S seconds	ANS.	h) = 10.2656666
* Program switch	6	ANS	6	distance after S seconds	ANS	1/ = 9.64181415
COMP	7	ANS	5	height after 2S seconds	ANS	h2 = 18.0813332
	8	ANS	6	distance after 2S seconds	ANS	12 = 19.2836283
* Angular mode selector: "DEG"	9	ANS	5	height after 3S seconds	AMS	h3 = 23.4469998
* The following in	10	ANS	6	distance after 3S seconds	ZAA	13 = 28.92544245
the sequence given at the right	11-	ANS	5	repeat from pro	ocedure 5	
22	12				end of calcul	ation AC

Program name Hy	ram name Hyperbola function									ate	erigi Sing	N	o.	5
Formula		d os	T				М	emo	ry o	onte	nt			
	$h x = \frac{e^x - e^{-x}}{2} \dots													
			0	0	cc	sh x			0	D				
$ cosh x = \frac{e^x + e^{-x}}{2} \dots \dots $			3	3)	ta	nh x			0	B)			Т	T
$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \dots$	code 3		(4	0	7				0	9)		1	-	Ť
910-9 L			(6	0				T	(0		data	x	T.
* Data ENI code ENI → answer	er		1-	mer	nory	→ c	ode		-					
Calculation flow chart	ST# M	, .			P R (M	yby 1	ner Tere	negre	5/8	90)	Ste
► ST#4	ST#4:	(0)	661	C.	1	1		1		1		69.2	A.	
Data x, code	33.	ENT	0	:	1	:		1					1	
code=1 code=3		IF	1		k	2	:	1	:	2		3	1	
SUB#2 vcode=2 SUB#1 Answer display SUB#3	3	ANS	IM	:						i i				
GoTo Answer display	K K	GoTo	4	:				-	-	-				26
SUB#1 sin/s calculation	SUB#1:	1 7 5	9	1	-			100	n.L.	in the				
	1 1	1	-	0	ex	1	0	+/-	ex	+	k	2	;	4
SUB#2 cosh calculation	SUB#2:	1 304	83	4							4		1	
		2		0	ex	+	0	+/-	ex	÷	k	2	:	56
SUB#3 tanh calculation	SUB#3:	1												
		9		0	ex	+	0	+/-	ex	;				
		3	-	0	ex	-	0	+/-	ex	÷	9	:		79
	Remarks:	1/x can	not b	e pu	t into	pro	gram							

Preparation : 1. Write-in program	Procedure	Lamp	Memory No.	Display meaning	Key operation	Remarks
* Program switch WRITE	1				START	CIGITATION .
	2	ENT	0	data x input	1.2	answer is
* Key-in in the	3	ENT	E	code input	1 🖾	1.509461345 for
sequence of the	4	ANS	1	sin hx input	ANS	sinh 1.2
2. Program calculation	5	ENT	0	data x input	2.5	answer is
* Program switch	6	ENT	E	code input	2 EN	6.132289499 for
COMP	7	ANS	2	cos hx display	ZNA ZNA	cosh 2.5
	8	ENT	0	data x input	· 9 EN	answer is
* The following in the sequence	9	ENT	E	code input	3 EN	0.716297868 for
given at the right	10	ANS	3	tan h display	ANS	tanh 0.9
	11	ENT	0	repeat f	rom procedure 2	STATE OF SECTION
	12	time			end of calculation	on AC

Program name Inverse	Inverse hyperbola									Date	d,	No. 6		6	
Formula	NEW JEE	ile.			80	h	N	lemo	ry c	onte	nt	_			
$sinh^{-1} x = ln (x + \sqrt{x^2 + 1}) \dots$ $cosh^{-1} x = ln (x + \sqrt{x^2 - 1}) \dots$. code 1		0	D	si	n h ⁻¹	x		1	6			-	200	
[x>1	11	(2) one bit v						T	(Ø					
$tanh^{-1} x = \frac{1}{2} ln \frac{1+x}{1-x}$ [x <	. code 3		3 tan h-1 x						-						
• Data ENI code ENI → Answer	II and		1	0	La			1	1	9)			Į.		
					10.7	270	176				SW	001	(III	noi.	
			(2)				Heli	(0	70	data	x	- 7	
MARK TOWNER TO	196		1	mei	тогу	+ 0	ode						7127	7,5677.	
Calculation flow chart	ST# M.	anul			P R (G II	Ilo	H	9/71	Step	
> ST#4	gipas g	hace	. 8	1.81	108	16	in	10	in:	00	(33)	3	.85	CUL	
code=1 code=3	ST#4:	ENT	0	:	1	;	10	in.	V	168	i i		10	150	
Is code 2?		IF	1	-	k	2	:	1	:	2	:	3	1	rior	
SUB#1 SUB#2 v code=2 Answer display SUB#3	2019/05	ANS	IM	1	27										
	546	GoTo	4	:	100	U.		10	00	31	de	7.3	110	26	
SUB#1 sin h ⁻¹ calculation	SUB#1:	9		0	×	0	+	k	1	:					
	ar uni	9	-	9	~	+	0	:	4	000	A.	8	174		
EMB and on the		1	-	9	In	:				y		20		50	
SUB#2 cos h ⁻¹ calculation	SUB#2:	9	=	0	×	0		k	1	:					
	961	9		9	~	+	0	:				3	rt l'	3	
SHAR BULL UP 137"		2		9	In	:								72	
SUB#3 tan h ⁻¹ calculation	SUB#3:	9	=	k	1	-	0								
entre sur de la comp	111	9	=	k	1	+	0	+	9	:					
A THE PART OF THE		3	=	9	In	+	k	2	:	184				101	

Preparation: 1. Write-in program	Procedure	Lamp	Memory No.	Display meaning	Key operation	Remarks
* Program switch WRITE	1				START	-1
THE STATE OF THE S	2	ENT	0	data x input	1.5	answer is
* Key-in in the	3	ENT	Ε	code input	1 ENI	1.1947632
sequence of the	4	ANS	1	sin h ⁻¹ x display	ZHA	for sinh 1.5
program	5	ENT	0	data x input	5.3	answer is
Program calculation Program switch	6	ENT	E	code input	2 1	2.3518328 for
COMP	7	ANS	2	cos h-1 x display	ANS	cosh-1 5.3
	8	ENT	0	data x input	· 6 🖾	answer is
* The following in	9	ENT	E	code input	3 🖽	0.6931472 for
the sequence given at the right	10	ANS	3	tan h ⁻¹ x display	INS	tanh-1 0.6
	11	ENT	0	repeat	from procedure 2	and between a
10.00	12		200	The second second	end of calculation	AC

Specifications

NORMAL OPERATION

Capabilities:

4 basic functions, chain & mixed operations, constant calculations for five functions, powers and reciprocals, automatic accumulation in four functions direct access to the memory, true credit balance and various kinds of practical calculations

SCIENTIFIC FUNCTION

Trigonometric/Inverse trigonometric functions, common/natural logarithmic functions, Exponentiations, square roots, reciprocals, sexagesimal/decimal conversion. Pi entry and scientific notation.

Capacity:

	input range	input range Output accuracy				
Entry/basic operations	10 digit mantissa or 8 di digit exponent (powers of to 10 ⁻⁹⁹).	ten	f	rom	109	9 to
$\sin x / \cos x / \tan x$	$ x \le 1440^{\circ} (8\pi \text{rad}, 1600 \text{gra})$	±1	in	the	8th	digit
$\sin^{-1} x / \cos^{-1} x$	x ≤ 1					digit
tan-1 x	$ x < 1 \times 10^{100}$					digit
$\log x / \ln x$	$0 < x < 1x \ 10^{100}$					digit
10 ^x	x < 100	±1	in	the	8th	digit
e ^x	<i>x</i> ≤ 230	±1	in	the	8th	digit
x^y	$0 < x < 1 \times 10^{100}$	±1	in	the	7th	digit
\sqrt{x}	$0 \le x < 1 \times 10^{100}$	±1	in	the	10th	digit
1/x	$ x < 1 \times 10^{100}$, $x \neq 0$	±1	in	the	10th	digit
0""	Up to second	±1	in	the	10th	digit
π	10 digit					
DECIMAL POINT	Full floating mode with under	floy	v			

NEGATIVE NUMBER

Indicated by the floating minus (-) sign for mantissa.

The minus sign appears in the 3rd column for a negative exponent,

Indicated by an "E" sign, locking the calculator. OVERFLOW MEMORY 1 independent memory and 10 data memories.

PROGRAM

Number of steps: 127 steps, stored system

Memory: 10 memories for calculation and data totaling plus 1 indirect address memory

Conditional and unconditional jump: max, of 10 jumps possible

Subroutines: max of 10 subroutines, 1 deep

Other functions: Manual jump, multiple assembly of one constant, program writing and check command display, and back-step.

READ-OUT

Zero suppression, Digitron tube panle, and LED for signs

POWER CONSUMPTION 0.6 W

POWER SOURCE

AC: 100, 117, 220 or 240V (±10V), 50/60 Hz with applicable AC Adaptor

DC: Four AA size Manganese dry batteries (SUM-3) operate about 8 hours continuously.

Four AA size Alkaline dry batteries (AM-3) operate about 19 hours continuously.

USABLE TEMPERATURE 0°C ~ 40°C (32°F ~ 104°F)

DIMENSIONS:

34.3mmH x 104mmW x 172mmD (1-3/8"H x 4"W x 7"D)

WEIGHT

364 g (12.8 oz) including batteries

Care of your new electronic calculator

This calculator is a durable, precision-made instrument which will provide you with years of trouble free service.

To help ensure this we recommend that the inside of the calculator not be touched. It is also inadvisable to subject the calculator to hard knockes,

and unduly strong key pressing.

Extreme cold (below 32°F or 0°C), heat (above 104°F or 40°C) and humidity may also effect the function of the calculator. When you do not use the calculator for a long period, take out the batteries to prevent possible damage from battery leakage. Special care should be taken not to leave dead batteries inside the calculator. Please make sure you switch off the power when you finish your calculations or intend to open the cover to change batteries. Should the calculator need servicing, take the unit to the store where purchased or to a nearby dealer.

CASIO₈